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1 Introduction

Parallel computation is an area in which software technology lags consider-
ably behind hardware technology. The need for parallel computing in a number
of applications (e.g., scientific computing, machine vision, artificial intelligence) is
unquestioned, and computers with hundreds of processors are now readily available
(for instance, the ButterflyTM [2] or the many derivatives of the Cosmic Cube [24]).
However, these machines are programmed in essentially the same way as existing se-
quential machines. The best available parallel programming languages are variants
of standard sequential languages, with extensions to let the programmer explicitly
divide a program into tasks and pass information between those tasks. Although
designers of these languages claim that they are no harder to use than conventional
sequential ones [13, 15], programmers still face the problem of figuring out how to
partition their application into pieces in addition to the usual problem of translating
it into a program. An appealing alternative is to leave partitioning of programs to
compilers. Since it hides partitioning problems from programmers, this approach
should make parallel computers much more usable than they are now.1

Unfortunately, progress on automatic parallelization has been extremely slow.
The key problem is that of recognizing data dependencies, i.e., recognizing when
two operations must be done sequentially because one produces or destroys a value
that the other needs. Generall3y any operations that are not explicitly serialized
by data dependencies can be done in parallel. Comprehensive detection of data
dependencies in traditional imperative languages is impossible, because of the use
of side effects to maintain program state and the presence of aliasing (the possibility
that several lexically distinct names actually refer to the same piece of state infor-
mation). Declarative languages offer much more promise for automatic detection of
data dependencies. The distinguishing characteristic of these languages is that their
programs are descriptions of the features that make a result "correct" rather than of
the detailed computations that produce that result. Declarative languages generally
do not allow side effects, and thus have the so-called "single assignment property":
every variable has exactly one value, defined in exactly one place. This property
can make detection of data dependencies trivial - they simply exist between the

definition of each variable and all of its uses, and nowhere else. If all else fails, data
dependencies can be detected at run time by testing to see whether a variable is
defined before using it (assuming that undefined variables can be marked somehow).
Furthermore, the absence of side effects usually means that the semantics of declar-
ative languages have a clear correspondence to well understood mathematics. From
our point of view as compiler writers, this feature is desirable because it makes it

"Butterfly" is a trademark of BBN Laboratories, Inc.

Of course, there will always be cases in which demands for extreme efficiency

require manual parallelization. There is an exact analogy here to assembly languages
versus high-level languages for fast, compact code: a few programs must be written
in the lowest-level language possible for efficiency, but considerations of programmer
productivity dictate that most programs be written in much higher level languages.



easy to reason formally about the compilation process. We therefore believe that
the right starting point for automatic parallelization is a declarative language with
a clean, mathematically oriented semantics.

We have chosen constraint languages as the declarative languages with which
to work. A constraint language is one in which programs consist of sets of relations
between inputs, outputs, and (possibly) intermediate values, such that the relations
hold if and only if the output values are correct for the inputs. Constraint languages
and logic languages are thus nearly the same thing: any relation in a constraint
program can be replaced by a predicate that tests whether that relation holds, and
any predicate in a logic program defines a relation between its arguments. There
is, however, an important but subtle distinction between constraint languages and
current logic languages: A constraint language provides a richer set of primitive
relations than do existing logic languages. We believe that doing so makes the
expression of general algorithms and their potential parallelizations more natural.
The cost of the richer set of primitives is that satisfying systems of constraints is
much harder than satisfying systems of predicates in existing logic languages. These
points are discussed in detail in Section 3. Like logic languages constraint languages
do not distinguish between inputs and outputs, either of programs as a whole or
of individual relations. This feature makes constraint languages more expressive
than many other kinds of declarative language, specifically functional and data flow
languages.

There are many different kinds of parallel computer and many different ap-
plications of parallel computing. Our research is aimed specifically at a certain
class of MIMD (multiple instruction stream, multiple data stream) architectures
and general purpose programming. The machines we are interested in consist of
a few hundred processors, each capable of carrying out substantial computations
independently of the others. Communication between processors is moderately ex-
pensive relative to computation (i.e., takes on the order of a few to several hundred
times longer than a local memory reference). The Butterfly [2] is a good example of
this kind of machine. This class of machines is of interest because it constitutes the
current generation of general-purpose parallel computers. The vague term "general
purpose programming" means that we are not designing our languages to the spe-
cific requirements of some narrowly defined class of applications. Instead, we hope
to repeat the history of languages like C or Lisp (to take two of many examples),
which, although perhaps designed for a particular use, have ended up being used
in almost every kind of application. Our first constraint language is intended to fill
roughly the niche on parallel machines that Pascal fills on sequential ones, namely
laboratory development of non-trivial programs for a variety of applications. This
goal reflects our research interests, and does not imply any feeling that constraint
languages cannot be applied to other areas. In fact, if our first language is suc-
cessful, we hope that later ones will be designed for real-world, production-quality,
programming.

The ultimate goal of our research is to show that constraint languages are a
practical tool for the kinds of programming described above. Achieving this goal
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requires solving two key problems. The first is to determine the features that
a general purpose constraint language should have; the second is to show that
such a language can make effective use of a parallel computer. We have defined
a language called CONSUL that we believe addresses the first problem. We are
now conducting a series of experiments intended to test CONSUL on a variety of
programs and to characterize the parallelism that it makes available in each. These
experiments will (we hope) support our contention that CONSUL is suitable for
general purpose programming, and will direct us to the richest sources of parallelism
in the language. A later phase of the CONSUL project will address the second
problem by trying to develop compilers that can exploit this parallelism on a real
multi-processor (the University of Rochester's Butterfly). This paper argues that yet
another programming language really is needed, describes the features of CONSUL
that should make it easy to parallelize, and discusses the status of our experiments
with it.

2 Previous Work, or, Why Yet Another Programming Language

As mentioned in the introduction, we see little hope for effective automatic par-
allelization of traditional imperative programming languages because of the presence
of side effects and aliasing. Systems that do attempt to parallelize imperative lan-
guages (for example [11, 23]) usually work well only for particularly regular code
(i.e., numeric routines), or specific machine architectures, or both. These systems
thus do not satisfy our interest in general purpose programming, and often do not
work for the architectures in which we are interested.

Although it is generally easier to parallelize declarative languages than im-
perative ones, all of the declarative programming styles proposed to date have
drawbacks. One of the first declarative styles to receive widespread attention from
the parallel programming community was functional programming [3]. Functional
languages treat programs as mathematical functions, generally written as compo-
sitions of simpler functions. The use of higher-order functions as combining and
control forms elegantly unifies computation, control, and communication into a sin-
gle formalism. The fundamental source of parallelism in a functional language is
concurrent evaluation of a function's arguments. However, argument parallelism is
only one of several sources of parallelism in a program, and the others are generally
missed by functional languages. The most important missed form of parallelism is
data parallelism (simultaneously performing some computation on all elements of
a data structure). The sequential replacement for data parallelism is iteration over
the data structure, and most parallelizing compilers try to replicate loop bodies
for parallel execution. In a functional language however, where iteration is imple-
mented as recursion, this possibility is often masked by dependencies between a
function's inputs and the arguments it passes to recursive invocations of itself. The
usual solution to this problem is to introduce mapping functions into the language.
i.e., functions that explicitly apply a second function to all elements of a list or other
data structure. Unfortunately this approach has several drawbacks, specifically its

3



.

restriction to those data structures for which mapping functions are defined in the
first place, an inability to handle cases in which the obvious data parallelism is over
an output of the computation rather than over its inputs, and an inability to handle
cases in which the goal of the computation is to produce some summary or aggregate
of the inputs (for example, summing the numbers in an array).2 In all cases where

mapping functions cannot be used, the user of a functional language must fall back

on recursion, with the extra data dependencies that it introduces. For the same
reason, data parallelism is also hard to express in classes closely related to the func-
tional languages, for example data flow languages [1] and equational languages [18].
Because real programs typically work on large data sets, data parallelism offers an
important opportunity for massive parallelization. The inability to deal well with
it is thus a serious limitation on the amount of parallelism that can be extracted
from functional languages and their relatives.

More recently, logic languages have been intensively studied as sources of paral-
lelism. Two promising sources of parallelism in a logic language are AND parallelism
(concurrent evaluation of the conjuncts in a clause) and OR parallelism (concur-
rent evaluation of alternative clauses in a procedure). Furthermore, because logic
languages allow systems of predicates to have multiple solutions and do not syntac-
tically distinguish inputs from outputs, data parallelism is easier to express than in
other declarative languages. We will return to this idea in the next section, when we
discuss data parallelism in CONSUL. These advantages not withstanding, progress
on parallelizing logic languages has been disappointing. One major problem is that
there are many extremely common facilities that cannot be implemented in a prac-
tical form within the predicate calculus formalism of logic programming. Examples
include arithmetic, input and output, et cetera. Existing logic languages provide
these facilities, but as "extra-logical" constructs; because they are extra-logical they
do not share fully in the benefits of logic programming for parallelization. Another
difficulty seems to be that logic programming is virtually synonymous with Pro-
log [91, and Prolog is a very difficult language to parallelize. The search strategy
most often used to generate results (backtracking) is inherently sequential, and a
strict left-to-right evaluation order is guaranteed. The required order of evaluation
combines with the fact that all clauses share a single data base but may use dif-
ferent names for its elements to make the problems of data dependency analysis
and aliasing at least as severe in Prolog as in any imperative language. In order
to get around these problems, a number of parallel variants of Prolog have been
proposed [8, 25]. These languages accomodate parallelism via features for syn-
chronizing producers and consumers of values, ways of committing the program to
certain decisions instead of being able to backtrack out of them, et cetera. Effective
use of these features requires users to be aware of the potential parallelism in their
programs, and forces users to understand procedural aspects of program execution
that ideal logic languages would abstract away.

2 Readers interested in a more detailed discussion of these points are referred to

[4].
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Despite the problems with Prolog and its variants, the general promise of logic
languages for parallel programming encourages us to look at closely related lan-
guages. Constraint languages, being generalizations of logic languages, are an ex-
cellent choice. The seminal work on constraint-based programming languages is
Steele's dissertation [26]. Prior to Steele's work, constraint satisfaction had been
used as a component in other systems [5, 27], but never as the basic computational
model in a programming language. Steele's work is important for demonstrating
a heuristic for satisfying constraints that should be easy to implement on either
sequential or parallel computers (Steele only did sequential implementations), and
that usually finds solutions in practical amounts of time. Unfortunately, as Steele
himself points out, his language is not sufficiently developed to be "general pur-
pose". One of the major difficulties is that there are no provisions for describing
computations that depend on internal state. Although surprisingly sophisticated
problems can be solved without explicit reference to state (for example, Steele de-
scribes a scheme for solving the N queens problem in his language), we believe state
is vital in many real applications. For example, editors must apply each command
to the text resulting from the previous ones, data bases without state are simply
meaningless, and so forth. The remainder of this paper describes a new constraint
language called CONSUL, which we have designed in an effort to make constraint-
based programming truly general purpose.

3 The CONSUL Language

The formal foundation for CONSUL is axiomatic set theory. Thus the funda-
mental data type is the set, and the fundamental operators are the logical connec-
tives and quantifiers. However, a number of abstractions are built in to the language
to make it more palatable than raw set theory to programmers. In particular, the
built-in data types include familiar ones such as sequences, integers, characters, et
cetera. Each of these types can be given a set-theoretic definition, but programmers
generally need not be aware of it. One consequence of the formal basis of CONSUL
that can be important to programmers, however, is that relations, being sets, can
be treated as data, and vice versa. This feature allows the language to include
higher-order relations in a natural way. Each built-in data type is associated with
built-in relations that correspond to common operations for that type. Thus CON-
SUL provides simple comparisons, arithmetic relations between integers, and so
forth as language "primitives". Again, the fact that these operations are not really
primitive to the underlying set theory is invisible to users. The built-in relations
can be composed into more complex ones using the logical connectives "and", "or",
and "not", with their standard meanings, and the quantifiers "for all" and "there
exists". An example and discussion of the key features of CONSUL appears below.

With its basis in set theory, CONSUL is superficially similar to SETL [10]. The
two languages differ greatly in orientation however: SETL is an attempt to abstract
data structure definition out of traditional imperative languages, whereas CONSUL
is an attempt to abstract explicit descriptions of concurrency out of programming by
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using a non-traditional declarative language. CONSUL also has certain similarities
to Crystal [7]: Both are motivated by a belief that a clean mathematical notation
is an appropriate way of expressing parallel algorithms, and both use sets as the
basic aggregate data type. Crystal, however, is a functional language (i.e., the basic
act in executing a program is applying a function to some inputs to produce some ,ji

outputs), whereas CONSUL is a constraint language (the basic action is solving an
equation).

3.1 An Example

Figure 1 shows a simple lexical analyzer written in CONSUL. The (nominal)

input to this program is a sequence of characters; the output is a sequence of numeric
codes (tokens) representing the words in the input. Input words are assumed to
come from the vocabulary "red", "blue", "green", "black", and "yellow", with words
separated by any number of spaces or new-line characters. The last character in the
input is assumed to be either a space or new-line. The output encodes "red" by the
integer 1, "blue" by 2, "green" by 3, "black" by 4, and "yellow" by 5. This example
is thus a simple paradigm for the front-end to any command-driven program (e.g.,
a shell, an editor, et cetera). The classical approach to this kind of analysis is
to pass the inputs through a state machine, with output tokens being determined
by the machine's state at the end of each word. Note, however, that a great deal
of parallelism can be exploited by searching the input for word boundaries and
passing each word to the state machine as soon as its end is found (concurrent with
the rest of the search and processing of other words). This is the approach taken
in the CONSUL solution, where relation "Number-Delimiter-Groups" defines the
beginning of each word and "FSM" describes the state machine. States are encoded
as integers in such a way that tokens are just final state codes.

CONSUL's syntax is based on that of Lisp. A constraint in CONSUL is an

S-expression. The first element of the expression names a relation that is to hold
between the remaining elements.3 Arguments appear in a "natural" (at least to the
authors) order. Thus, for example, (plus x y z) means x = y+z, (greater a b)
means a > b, (elt x a i) means x = a[i], et cetera. Anonymous constraints are

constructed by "rho", in analogy to Lisp's "lambda" for constructing anonymous
functions. Named constraints can be defined with "defrel". A convention for nest-
ing constraints using "%" to share values between inner and outer ones has been
borrowed from Steele [26]. Thus the constraint

(less I (size %, Out))

is identical to
(exists ((Temp integer))

(and (size Temp Out)

(less I Temp)))

3 As a point of terminology, we use the term "relation" to denote the mathemat-

ical concept, and "constraint" to denote its syntactic representation in CONSUL.
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;;; Delim - Holds if and only if C is a delimiter character.

(defrel Delim (C) (member C {set #\space #\newline}))

;;; Number-Delimiter-Groups - Number of groups of adjacent delimiters between

;;; In[OJ and In[Pos] is Count, and In[Pos] is not in the middle of a word.

(defrel Number-Delimiter-Groups (Count In Pos)

(exists ((Ends {power-set integer}))

(and (or (equal Pos 0)

(Delim (elt % In Pos)))
(equal Ends {subset integer

(rho (I)
(and (greater I 0)

(less I (plus % Pos 1))

(Delim (elt % In I))
(not (Delim (elt % In (minus I i))))),

(size Count Ends))))

;;; Final-State - Holds iff State is a final state of the state machine.

(defrel Final-State (State) (member State {set 1 2 3 4 5))

;;; Trans - Holds when FSM can go from state Now to state Next on input C.

(defrel Trans (Now C Next)

{set (0 #\space 0) (0 #\newline 0) ; Ignore leading space

(0 #\r 6) (6 #\e 7) (7 #\d 1) ; Recognize "red" as I

;;;FSM - State machine yields Token if started at In[Start] in state State.

(defrel FSM (Start In Token State)
(or (and (Final-State State)

(equal Token State))

(and (not (Final-State State))

(FSM (plus % Start 1) In Token (Trans State (elt % In Start) ')))

,,, The main analyzer:

(and (size (Number-Delimiter-Groups % In (minus % (size % In) )) Out)

(forall ((Token Out))

(exists ((Pos integer)

(Start integer))

(and (index Pos Token)

(Number-Delimiter-Groups Pos In Start)

(FSM Start In (datum % Token) 0)))))

Figure 1: A Lexical Analyzer Written in CONSUL
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This nesting is purely to save programmers the nuisance of creating large numbers of
temporary names, and has no effect on the semantics of CONSUL. Forms enclosed
in braces ("{" and "}") are set constructors. These forms are not true constraints,
but are more like macros for constructing sets. They are discussed in more detail
below. Some other important features of CONSUL are as follows:

Program structure: The key forms for building CONSUL programs are the
connectives "and", "or", and "not", and the quantifiers "forall" and "exists". Each
of these constructs has its normal logical meaning. Note that the connectives do
not imply any order in which the connected clauses will be solved. AND and
OR parallelism can be exploited by CONSUL as by other logic languages. The
quantifiers introduce one or more new variables, whose scope is restricted to the
quantifier's body. Each variable denotes a value that either ranges over (for "forall")
or must lie in (for "exists") a designated set. The syntax for both quantifiers is

(quantifier-name (vari set 1 )

(var,, set,,))

body)

Note that the scope of the names introduced by "forall" or "exists" does not include
the definitions of other variables introduced by the same quantifier. The major
relations in the lexical analyzer (for instance, "Number-Delimiter-Groups", "FSM",
and the main analyzer) demonstrate typical CONSUL structure. As suggested by
these examples, "and" and "or" can define blocks of constraints, and are often
used to define the body of a quantifier. "FSM" demonstrates the CONSUL idiom
corresponding to conditionals in imperative languages. The simplest form of this
idiom corresponds to the if-then-else construct, and looks like

(or (and (condition)
(then- body))

(and (not (condition))
(else - body})))

This construct generalizes easily to forms that correspond to Lisp's "cond". As
seen in the example, "exists" is mostly used to define local variables (for exam-
ple, "Ends" in "Number-Delimiter-Groups" and "Start" and "Pos" in the main
analyzer). "Forall" can be viewed as a way of mapping relations over sets, and is
discussed in the next paragraph.

Data Parallelism: CONSUL shares two properties with logic languages that
help in the expression and detection of data parallelism. First, relations do not
distinguish inputs from outputs, so mapping operators can be used to describe
more kinds of data parallelism than in functional languages and their relatives. In
particular, it is as easy to define a computation as a mapping of some relation over
the final result as to define the computation as a mapping over inputs (although
in doing so one must be careful not to write constraints that are trivially solved
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by the empty set. i.e., no result at all). In CONSUL, mappings of any sort are
written using "forall", which maps a relation over one or more sets. The main
body of the lexical analyzer demonstrates "forall". Since the quantified variable in
this "forall" ranges over output tokens, this example also demonstrates mappings
over outputs. An English specification for the main body could be "There is an
output token for every input word, and every token corresponds to the final state
of the state machine when it is run on the corresponding word". The first clause
of this specification is expressed in CONSUL by the "size" sub-form; the second
by the "forall". Note that in describing the analysis in terms of "every token", the
English leads naturally (at least to our way of thinking) to data parallelism over

the outputs of the program. We do not see any equally simple specification that
leads as naturally to data parallelism over inputs. Thus the example shows that
the insensitivity of logic and constraint languages to distinctions between input and
output really can be a significant help in writing parallel programs.

Even the relatively powerful kinds of mapping allowed by constraint and logic
languages do not allow all forms of data parallelism to be expressed. Those cases
that cannot be described by mapping must still be described recursively. As dis-
cussed earlier, recursion introduces data dependencies that can obscure data par-
allelism. The second way in which constraint (and logic) languages support data
parallelism is by helping distinguish these spurious dependencies from dependen-
cies that are important parts of a program. The problem with data dependencies
in most declarative languages is that by making one value depend in a specific way
on another they force a computation to be done in a specific order. Parallelism. on
the other hand, requires that the steps of a computation can be done in any order.
In CONSUL one can write constraints that have multiple solutions. If the values
involved in a data dependency are solutions to such constraints, then each possi-
ble solution corresponds to a different data dependency, and hence to a different
execution order. Thus the possibility of multiple execution orders (in other words.
of parallelism) is expressed in recursive CONSUL programs by giving deliberately
imprecise (although still correct) definitions of the arguments to the recursion. For
example, a constraint "Total" that requires "Tot" to be the total of the numbers in
"Set" can be defined as follows:

(defrel Total (Tot Set)
(exists ((X Set))

(or (and (size I Set)

(equal Tot X))
(and (greater (size % Set) 1)

(plus Tot
X
(Total %. (set-difference % Set {set X})))))))

This definition can be read as "The total of a one-element set is the elenment: the
total of a larger set is computed by removing some element from the set, totalling
the remaining elements, and then adding the removed element to the sub-total".

9
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The key point is that any element of the set can be removed, and this is precisely
what the CONSUL program says - "X" need only be some element of "Set", not
one specific element. We hope that compilers can be written that detect at least
some of these imprecise data dependencies and remove them for parallel execution.

Sequences: One of the most important kinds of set in CONSUL is the sequence
or tuple. The importance of sequences comes from the fact that they are the only
ordered structures in CONSUL. The lack of an ordering in CONSUL's other data
and control structures is a deliberate effort to give compilers maximum flexibility in
parallelization. However, the idea of an ordering is essential to some applications.
For instance, consider the lexical analyzer from Figure 1. The ordering of words
in its input defines an ordering of tokens in its output, and the analyzer would be
useless if tokens appeared in some other order. Typically ordering arises in these
applications because of the way in which they interact with users or some other
external system. Internally, even elements of ordered data structures can often be
processed in parallel. CONSUL reflects this observation by treating sequences as
special kinds of set. In other words, all of the sources of parallelism discussed for
sets also apply to sequences, yet sequences still provide a way to describe essen-
tial orderings. The lexical analyzer's data parallel generation of tokens is a good
example. (Actually if one tries hard enough one can write sequential code using
sequences - for an example, look ahead to Figure 2 and note the data dependency
between successive elements of "States".)

Inputs and outputs of CONSUL programs are modelled as sequences, with
many of the properties of streams in functional languages. In the version of CON-
SUL used in the lexical analyzer, "In" names the single input sequence and "Out"
the single output sequence. Of course more mature versions will include multiple
inputs and outputs and ways of binding them to external files. We assume that
the external representation of a CONSUL I/O sequence has a natural ordering that
corresponds to the index ordering within the program. Examples are the temporal
order in which characters are typed at a keyboard or the spatial order of records in
a file.

Sequences need not be homogeneous, and so can have elaborate internal struc-
tures. This feature means that CONSUL sequences are equivalent to lists in lan-
guages like Lisp or Prolog. Just as in Lisp, a CONSUL program can be represented
by a CONSUL sequence. When reading the CONSUL examples in this paper,
parentheses should be thought of as sequence delimiters.

For all the importance of sequences, the precise way in which CONSUL will
let programmers "see" them as sets has yet to be determined. For now it seems
desirable for a sequence to be viewed as a set of ordered pairs, with each pair
representing one element of the sequence.4 Each pair contains an index, giving
the position of the element in the sequence, and a datum indicating the value of

4 Note that we say "viewed" rather than "represented", since (as with most other
primitive data types) the way in which programmers think about sequences should
be very different from the way implementations actually store them.
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the element. In this paper we use the constraint (index i x) to mean that "i"'
is the index component of ordered pair "x" and (datum d x) to mean that "d" is
the datum component of "x". The main advantage of this view is that it allows
sequences to be used interchangeably with sets in such forms as "size", "foral",
et cetera. The disadvantage is that the ordered pairs used to represent elements
of a sequence will not look like 2-element sequences, even though ordered pairs
and 2-element sequences are mathematically the same thing (otherwise 2-element
sequences would be defined in terms of themselves). This distinction makes the
formal description of CONSUL slightly less elegant than we would like, but does
not pose serious pragmatic problems. It is also clear that the proposed view of
sequences is just a special case of a much more general associative structure. As we
gain experience with CONSUL, we may decide to replace sequences as primitives
with this more general structure.

Set constructors: Since the set is CONSUL's primary data structure, the lan-
guage provides a powerful collection of primitives for describing sets. These set
constructors include most of the common mathematical operations on sets, includ-
ing power set, cross product, et cetera. Figure 1 demonstrates several set con-
structors, including "set" (builds a finite set from a list of its arguments), "subset"
({subset s c} is the set of elements of "s" for which constraint "c" is satisfied), and
"power-set" (builds the power set of its argument). Several simple but important
sets arr available as CONSUL primitives, and can be used with the constructors to
define more complicated sets. For example, the CONSUL primitive "integer" stands
for the set of all integers, and "empty" represents the empty set. Set constructors
are human-readable representations of the data structure used by CONSUL to rep-
resent a set, and so are not constraints. (But note that a set can be represented
in part by a constraint that its elements satisfy, so the values referenced in a set
construction need not be compile-time constants. This feature is used to advantage
to define the value of "Ends" in "Number-Delimiter-Groups" in the lexical ana-
lyzer.) The reason for distinguishing set constructors from constraints in CONSUL
has to do with boot-strapping set definitions - if set constructors were constraints
it would be necessary to name the constructed sets, but names must be introduced
by "exists" or "forall", which require a set from which each name can take values.,
which in turn brings us back to the problem of defining sets.

Data types: The set of possible values that "exists" and "forall" associate with
a newly declared variable can be thought of as the variable's type. For example,
the "exists" in "Number-Delimiter-Groups" declares "Ends" to be of type "set of
integers". In order to simplify the definition of complicated data types (among
other things), CONSUL provides a "define" form that allows programmers to name
arbitrarily constructed sets. Using "define", the example from the lexical analyzer
could have been written

(define Integer-Set {power-set integer))

(exists ((Ends Integer-Set))
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;;;FSM - Holds if and only if Token is the final state reached by running

;;; the word recognizer on characters from In starting at position Start.

(defrel FSM (In Start Token)
(exists ((States {sequence integer)))

(and (equal (elt % States 0) 0)
(Final-State (elt %. States (minus % (size % States) 1)))
(equal Token (elt % States (minus % (size % States) 1)))
(forall ((I {subset integer

(rho (I)

(and (greater I -1)
(less I (size %. States)))))))

(Trans (elt %. States I)
(elt % In (plus % Start I))
(elt % States (plus % I 1)))))))

Figure 2: Non-recursive State Machine for Lexical Analyzer

User-defined relations: CONSUL programmers can define new constraints to
represent arbitrary relations. "Defrel" and "rho" are used for this purpose. de-
pending on whether one wants to name the new relation or not. Most top-level
forms in the lexical analyzer are examples of "defrel"; a use of "rho" can be seen
in "Number-Delimiter-Groups". It is most common to define new constraints as a
block of code with parameters, analogous to function definitions in other languages.
However, the set-theoretical semantics of CONSUL mean that a constraint is really
just a representation for a (possibly infinite) set of tuples. Thus one can define
finite constraints by explicitly listing the tuples that belong to them (see "Trans"
in the lexical analyzer). Applying (i.e., "calling") a constraint means finding an
assignment of values to its arguments such that wbhn these values are grouped into
a tuple in the order in which the arguments are given to the constraint, that tuple
is an element of the set represented by the constraint. CONSUL is lexically scoped,
thus providing an interpretation for free variables in the body of a constraint. The
"FSM" relation in the lexical analyzer shows that constraints can be defined re-
cursively. Such descriptions can be natural reflections of how a programmer thinks
about a relation, particularly if the relation is defined in terms of internal state
variables. However, CONSUL often allows more declarative definitions also. For
example, the recursion in "FSM" could be eliminated by asserting that there exists
a sequence of states starting with 0 (the start state) and ending with a final state,
such that "Trans" holds between pairs of adjacent states and the corresponding W

input character. This version of "FSM" is shown in Figure 2.

3.2 A Possible Execution Model for CONSUL

CONSUL has two characteristics that make it particularly attractive to us as a
parallel programming language. The first is the fact that every variable in a CON-
SUL program represents exactly one value, i.e., CONSUL is a single-assignment 
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language.' As noted earlier, the single-assignment property makes detection of data
dependencies much easier than it would be otherwise. Data dependency detection
in CONSUL is not quite as easy as in some other single-assignment languages (for
instance functional languages), because the value of a CONSUL variable can be de-
fined jointly by several constraints. Thus there may be times during the solution of
a system of constraints when a variable's value is only partially known (for example.
it might be known to be an integer greater than zero, but not which such integer).
We believe we can distinguish partially known values from fully known ones, and
so they will not pose a serious problem for CONSUL translators. The basic idea is
to bind variables to sets of possible values rather than to just one value. A variable
whose value is known precisely is then represented by a set containing a single mem-
ber; a partially known value is represented by a set with multiple members. When
a variable is bound to a set with only one member we say that it is precisely bound.
A variable that is not precisely bound is imprecisely bound. Since any CONSUL
implementation must have ways of representing sets anyhow, this way of binding
variables to values should be fairly easy to implement.

The second advantage of CONSUL for parallelization is that there appears to be
a straightforward way of partitioning CONSUL programs into concurrent processes.
(But the straightforward partitioning is not necessarily a very good one. Ways of
improving it are suggested below.) Note that the present discussion of this strategy
is preliminary, and may change with time. The basic idea is that each constraint in a
program is solved by a separate process, with processes communicating by message
passing. Messages contain bindings of variables to (sets of) values. Each message
contains a complete set of bindings, i.e., bindings for all variables accessible to the
constraint that generated it. Special processes corresponding to entries into new
scopes and exits from old ones inject new variables into messages and filter out those
that are no longer visible. Whenever a process receives a message it immediately
tries to solve its constraint for the received bindings. If (and only if) a solution is
found, the process then sends messages of its own containing updated bindings. An
example of this strategy is shown in Figure 3.

The constraint shown in Figure 3 just requires that "S" have a value of -1.
0, or 1, corresponding to the sign of "X. Each of the base constraints in the
CONSUL code corresponds to a process (denoted by ovals in the diagram). "And"
and "or" forms correspond to processes that merge streams of messages. An "or"
merge process simply receives messages from any of its possible senders and relays
them to its receiver(s). OR parallelism is exploited, since everything that can send
to an "or" merge is a separate process that runs concurrently with other senders
to the "or". The fact that processes do not share the data structures describing
bindings (i.e., the use of message passing instead of shared memory for interprocess
communication) is what enables us to use such a simple implementation of OR
parallelism. If processes did share bindings then there would be a danger of logically

' The quantified variable in "forall", which ranges over a set of values, is cousi(t-
ered to be a family of variables, one per element of the set.
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(defrel Sign (X S) S is the sign of X

(or (and (less X 0)

(equal S -1))
(and (equal X 0)

(equal S 0))

(and (greater X 0) N

(equal S I)))) N

a: CONSUL Code

mege

equal s -I

(equal x 0)
FX AND

merge merg'( eq u a s 0-,) M 0e'-',
(Incoming (Out gorg

Message- esa

ND'D

b: Process Structure

Figure 3: A Constraint and its Partitioning into Processes

independent alternatives making mutually inconsistent changes to the bindings. We
avoid this problem by letting each message be a complete, self-contained solution

to a set of constraints, and by placing different solutions in different message-.

AND parallelism can also be exploited, using "and" merge processes. An "and"

merge process is considerably more complicated than an "or" merge however. An

"and" merge waits until it has received one or more messages from each of its

possible senders, and then combines the bindings contained in these messages into

consistent sets of bindings to be placed in output messages. Note that this way

of mapping "and" forms into process structures is only one of several possibilities.

Another option, that may be much more efficient in some cases, is discussed in the

next paragraph.

Not surprisingly, the AND parallel process structure illustrated in Figure 3 does
not work very well if the processes corresponding to the body of the "and" do not

have much inherent parallelism. Specifically, if there are data dependencies between
sub-forms of an "and", the "and" merge process may have to wait a very long time

before it can make a consistent set of bindings from the messages it receives. As

an example, consider the constraint shown in Figure 4a. This constraint uses two
"plus" forms to force "Sum" to be the sum of "XI", "X2", and "X3". Assuming that

"XI", "X2", and "X3" are precisely bound, then the first "plus" constraint defines
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(defrel Sum-Of-3 (Sum Xl X2 X3)

(exists ((Temp integer))
(and (plus Temp X1 X2)

(pls Sum Temp X3))))

a: CONSUL Code

Xiplis Tenqi X1 X2- rXj
X X2...

Sum merge Sum
Temp ... - Temp

(plus Sum Temp X3)

b: Process Structure Using "and" Merges

X2 X2
, X3 _ l... =u Temp X1 X (pluSum Temp XZ X'

Sun, Sur] ; .
.Temp ..Tenp -

c: Process Structure Respecting Data Dependencies

Figure 4i Handling Data Dependencies in "And" Fortni

a unique precise binding for "Temnp". Given this binding, only on( prcle binding
of "Sum" is possible. \ithout a precise binding of "Temp", hovever. the second
"plus" constraint can produce an infinite number of consistent precise binding for
"Temp" and "Sum" jointly. If an 'and" merge is used to implement "Suni-Of-3". as
shown in Figure 4b, that is exactly what will happen: The process corresponding
to the first "plus" will send a single message to the "and" merge. the process
corresponding to the second "plus" will send an infinite number of messages. The
"and" merge must select from this second stream the one message containing the
binding for "Temp" that is consistent with the first "plus". A much more efficient
implementation would eliminate the merge and just have the first "plus" send its
message directly to the second, which could immediately compute the one successful
binding of "Sum". This solution is shown in Figure 4c. Note that this solution has
no parallelism, but this follows directly from the absence of useful parallelism in
the code from which it was generated. As a general rule, data independent sub-
forms of an "and" can be solved concurrently, with results combined in an "and"
merge, whereas data dependent sub-forms are better solved serially. In the latter
case the partitioning strategy can be improved by having a single process solve all
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(forall (MX {set 1 2 3}))
(some-constraint X ...))

a: CONSUL Code

', (some-constrai:,t X ...'X =I /

-- X 2 --
6fora1

- (some-cons'ra.it X ._ foraUl
,.entry 1,exit

neco- .rait x

b: Replicating the Body of the Form

i et c on t nt
<entry.

C: Pipelining

Figure 5: Partitioning a Data Parallel Form

the serialized constraints, since there is no parallelism to be exploited by multiple
processes.

Data parallelism can be implemented in our execution model by replicating
the data parallel form once for each data value. An example of this replication
appears in Figure 5b. The "forall entry" and "forall exit" processes in this example
delimit the scope of the quantified variable introduced by the "forall". The "forall
entry" distributes incoming messages to each replica of the body of the "forall'.
supplementing each outgoing message with a different precise binding for the quan-
tified variable. The "forall exit" acts much like an "and" merge. It waits until
each replica of the body has succeeded at least once, and then tries to combine
the received bindings into one or more outgoing messages. Another approach to
data parallelism is to pipeline it: The entry process sequentially sends messages
containing different bindings for the quantified variable into the body. Figure 5c
demonstrates this approach. Replicating the body should provide more parallelism
than pipelining (as long as the data structure involved is large enough), but may
be harder to implement (a very large number of replicas may swamp the target
machine, and in some cases it will be hard to tell how many replicas are needed).

16 .2

,.

-z~



(defrel Prime-Factor (X F) ;F is a prime factor of X
(exists ((F2 integer))

(and (times X F F2)
(prime F))))

a: CONSUL Code

%F

r2- -.

y(ties X F F2 ine F)-* >
' ".oo ood" 2 ..j

b: Message-Based Backtracking

(times X F F2)--- (prime F)

i 
exists) .,entry,

c: Data-Parallel Search

Figure 6: Two Approaches to Nondetermistic Computation

Both approaches should extend to data parallelism arising froni forms other than
"foral .l'

One of the strengths of constraint languages is their ability to express nonde-
terniinistic computations. Our execution model supports two ways of implementing
nondeterminis. One is to allow processes to respond to receipt of a set of bind-
ings with a "no good" message that causes the sender to backtrack. The other
is to treat nondeterminism as a data parallel search over the set of possible solu-
tions. In this approach the body of the nondeterministic computation is replicated
(or alternatively pipelined) once for each possible solution, with an entry process
sending different possibilities to each replica. An exit process acts like an "or"
merge, forwarding any incoming message after removing local variables from it.
Both approaches are illustrated in Figure 6. As usual, the different approaches
have complementary advantages. Message-based backtracking serializes computa-
tion, but involves relatively few processes. As with serialized sub-forms of an "and".
one can improve partitioning by solving systems of constraints that are expected to
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backtrack in a single process. Parallel searching is highly parallel, but may involve
inordinately large numbers of processes, many of them "wasted" in the sense that
they will ultimately fail to contribute solutions.

The main problem with the execution model described here is that the individ-
ual processes are likely to be small and the messages they exchange large. In other
words, overhead of process creation and communication may eliminate much of the
advantage of parallel execution. The solution to this problem is to give each process
more work to do (thus increasing its ratio of useful computing time to overhead time)
and to reduce the size and number of messages sent. Ways of increasing process
size by coalescing processes that would be serialized anyhow by data dependencies
or backtracking have already been pointed out. Many of the entry, exit, and merge
processes included in the above discussion can also be eliminated. Entry processes
that do nothing but insert local variables into messages can be absorbed into the
first processes that use the local variables, exit processes can be similarly absorbed
into the last processes with access to locals, and "or" merges can be eliminated by
having any process that would send a message to the merge instead send directly to
the processes that would ordinarily receive from the merge. Finally, it may well be
useful to combine even potentially concurrent constraint satisfactions into a single
process just to balance the work done by each process .:i v-.'nst the overhead incurred
by it. Various graph partitioning t2chniques (e.g., Kernighan and Lin's heuristic [20]
or min-cut algorithms [12]) seem like promising candidates for this combining step.
Note that all of these strategies for reducing the number of processes in a program
also reduce the number of messages, since some communications that would have
been via interprocess messages are now just interactions between different parts of
a single process. It should also be possible to reduce the size of the messages that
are sent. For instance, one way for process A to send environment E to process B
is as the difference (i.e., set of variables with different bindings) between E and the
previous environment sent from A to B. Other ways of reducing the overhead of
message passing will be sought as compiler development begins.

There are a number of similarities between this execution model and other
approaches to constraint satisfaction or parallel computation. Perhaps the most
obvious similarity is between our mode! and the data flow model of parallel com-
putation [1]. The main difference between our model and data flow is that we pass
complete environments between processes rather than values of individual variables.
Since each message is a complete environment, we do not need to synchronize a pro-
cess's computation to the arrival of multiple values on different inputs to the process.
Our model is also quite similar to Steele's approach to constraint satisfaction [26].
Again, the main difference is in passing complete environments rather than individ-
ual values. Passing complete environments simplifies synchronization again in this
case, and also seems to simplify the handling of nondeterminism. Li describes a
message-passing method for parallel execution of logic programs [21], but messages
still contain individual values rather than complete environments (Li notes that
passing complete environments is more expensive than passing single values - we
agree, but feel that its benefits for synchronization and nondeterminisnm are worth
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the cost). Li does describe an algorithm for merging results from multiple sources
that may be applicable to the "and" merges in our model. Note, however, that our
model has alternative implementations of "and" that do not require merging. and
so we may be able to limit merging to situations in which much simpler merging
algorithms can be used.

3.3 CONSUL and Logic Programming

The important difference between constraint languages (and hence CONSUL)
and logic languages (i.e., Prolog) is the richer set of primitives present in a constraint
language. In some cases, this richness has important advantages for parallel pro-
gramming. For instance sets, as general, unordered data structures, seem to support
data parallelism well. Sequences are another example. Although they can be de-
fined using sets, the benefits of providing them as primitives (namely an I/O model
and a general ordering mechanism) dictate that one do so. In other cases we give
full relational definitions to primitives that logic languages treat as extra-logical.
Common data types such as numbers or characters fall into this category. We feel
that because all primitives are defined in the same formal framework, constraint
language translators should face fewer special cases than those for logic languages.
and the languages themselves should be easier to use.

Unfortunately, the presence of a uniform set of powerful primitives makes sat-
isfying CONSUL constraints much harder than satisfying predicates in languages
like Prolog. In particular, many of the primitives constrain two objects to be equal.
Theorem proving (which is closely related to constraint satisfaction) in the pres-
ence of equality is the topic of intense research [14, 17, 19], but general procedures
for doing it are not yet known. In addition to the problem of equality, satisfying
CONSUL constraints is P-Space Hard, since CONSUL allows arbitrary nesting of
universal and existential quantifiers. For these reasons, CONSUL implementations
will be largely heuristic. The heuristic approach should not be a serious handicap
however. Folk wisdom about Prolog suggests that most logic programs are written
in simple styles that allow much more direct solution than admitted by theoretical
complexity measures. The same should be true of CONSUL, suggesting that even
theoretically very expensive solution strategies may perform well in practice, and
that it may in many cases be possible to optimize an expensive search for a solution
into a direct computation. Such optimizations can be based on symbolic simplifica-
tion of constraints, using techniques available from the symbolic algebra literature
[6]. One use of this approach has already been reported by Gosling [16], who claimed
a substantial benefit even from trivial algebraic transformations. When all else fails,
CONSUL translators should be able to recognize programs for which the available
solution strategies may not work, and alert their users to the problem. Annotations
can be added to CONSUL to let users help translators out of such situations. We
expect, however, that these annotations will not need to be widely used.

Despite the differences, constraint and logic languages also have much in coni-
mon. Many of the same sources of parallelism appear in both, and the key CONSUL
control forms ("and". "or", and "forall") have simple implementations in Prolog.
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These observations suggest that our work on parallelizing CONSUL should be im-
portant to work on parallelizing other logic languages and vice versa.

3.4 Experience with CONSUL and Status of the Project

At present (February 1987) we have a definition for a primitive dialect of CON-
SUL. We are working on writing a crude interpreter for this dialect as part of the
parallelism measurements discussed below. This interpreter will support the seman-

tics presented in this paper (although with help from users in satisfying constraints).

but will differ slightly from this paper in syntax. In particular constraints cannot
be nested using "%", and forms such as "defrel" or "member" that are really short-
hand notations for awkward combinations of more primitive forms6 are missing.
One important role for the interpreter is to give us a concrete framework within
which to write sample CONSUL programs. This exercise will provide some evidence
to support (or disprove) the claim that CONSUL is suitable for general-purpose pro-
gramming, and will help us design more user-friendly dialects of it. To date only
a few programs have been written (e.g., the lexical analyzer presented above). We
are also using the interpreter as a vehicle for testing implementation ideas that may
be used by a full compiler, for example representations of sets and partially-defined
values.

The main reason for writing the CONSUL interpreter is to allow us to measure
the parallelism available in real CONSUL programs. To do this, the interpreter re-
lies on its user to provide values satisfying each constraint. The interpreter proper
notes the order in which the user satisfied constraints and which ,-riables were
read and defined for each. This information is written to a trace file, which is later

compacted into a maximally parallel form by a compactor. The interpreter also
handles routine book-keeping and execution modelling. The trace files generated
by the interpreter contain complete information on the modes, values, and data de-
pendencies encountered in actually executing a program. It is thus easy to compact
them into the most parallel possible form, providing a measure of the parallelism
that could have been exploited by the program. The granularity of compaction is
the constraint, i.e., the compacted traces indicate which constraints could have been
satisfied in parallel with which others. Because the traces are taken from programs
as they run, the parallelism found by the compactor is "oracular" (see [22]) in the
sense that a real compiler could fully exploit it only if it had perfect information
about the object program's run-time behavior. The compactor also ignores commu-
nication and other overheads of real parallel execution. Our results thus indicate an
upper bound on the parallelism that can be derived from CONSUL programs, but
do not indicate how close a real compiler can come to that bound. The experiments
are intended only to determine whether there really is substantial parallelism in
CONSUL programs, and thus whether it is worthwhile to try to build compilers
that can find it.

6 "Defrel" is a special case of "define", and (member x s) is the same as the
application (s x).
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CONSUL will continue to evolve as experience with it accumulates. It is already
clear that implementing the full syntax from this paper will be a big step towards
making CONSUL programs less verbose. A macro facility would also make the
language much friendlier. Farther in the future, the need for and uses of annotations
to guide compilers must be studied. Finally, there will doubtless be developments
whose exact nature we cannot yet predict in areas such as new data types. interfacing
CONSUL programs to their host operating systems, et cetera.

4 Summary and Conclusions

We have addressed the problem of automatically exploiting parallelism in com-
puter programs, with particular emphasis on linguistic barriers to parallelism de-
tection. Although functional and logic languages have many desirable character-
istics in this respect, we find that they are not entirely ideal. We therefore offer
constraint-based programming as a generalization of logic programming. By virtue
of their richer sets of primitives and the more uniform ways in which they allow
relations to be defined, constraint languages support more natural descriptions of
potentially parallel algorithms than do existing logic or functional languages. This
extra expressiveness comes at a price, however, namely that satisfaction of general
constraints can be much more difficult than satisfaction of predicates for a language
like Prolog. None the less, we believe that technology can be developed for building

* effective compilers for constraint languages - much of what is needed even exists
now. We have defined a prototype constraint language called CONSUL. which in-

cludes the features that we feel are necessary for general-purpose constraint-based
programming of multi-processors. The key elements of CONSUL for parallel pro-
gramming are the following:

* Data structures and control structures are unordered; AND and OR parallelism
can be exploited.

• The availability of a powerful mapping operator and the ability to specify values
imprecisely (with the imprecision possibly detectable by a compiler) support
data parallelism.

e Sequences allow computations in which data must be ordered to be described.
often without inhibitting parallelization.

* The language's main sources of parallelism correspond to a simple execution
model that appears to be easy to implement on real multiprocessors.

A formal definition of CONSUL's semantics is possible based on axiomatic set the-
ory.

The main contribution of our work so far is a prototype for a language that we
(and others) can use as a base for research in general-purpose constraint-based par-
allel programming. Unlike most other languages designed for parallel programming.
the parallelism in ours is to be detected by a compiler, not by the programmer. Al-
though both constraints and sets have been used in other languages. ours is the first
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(that we know of) to try to use the full language of set theory directly as a program-
ming language. Future work will include justifying the claim that our language is
really general purpose (and doubtless modifying it to make it more so), completing
our measurements of the parallelism that it makes available, and trying to develop
a practical compiler for it. The latter work is particularly important because of
our undoubtedly controversial decision to emphasize clean, parallelizable seman-
tics over general implementation algorithms. We hope that the CONSUL project
will convi- 7ingly demonstrate that constraint languages are a sound foundation for
powerfui, convenient, parallel programming.
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